
Docker	on	Windows	Server
2016
Friday,	August	4,	2017	2:26	PM

Install	and	configure	Docker,	along	with	deploying	and
managing	Windows-based	containers,	on	a	Windows	Server
2016	server.

This	is	a	short	workshop	to	introduce	you	to	Windows-based	containers.	In	this	workshop,	you
will	gain	experience	in	installing	and	configuring	Docker	on	a	Windows	2016	Server	server.
You'll	then	deploy	a	couple	of	different	images	as	containers	to	the	server	and	experiment	with
managing	those	images	and	containers.	Finally,	you	will	configure	Azure	to	allow	you	to	access
those	containers	from	outside	of	your	virtual	network.

What	You	Will	Learn
Installing	and	Configuring	Docker	on	Windows	Server	2016
Downloading	and	Managing	Images
Deploying	and	Working	With	Containers
Exposing	Docker	Services	in	Azure

Ideal	Audience
IT	Managers
Developers	and	Software	Architects
Configuration	and	Change	Managers
DevOps	Engineers

This	is	a	short	workshop	to	introduce	you	to	Windows-based	containers.	In	this	workshop,	you	will
gain	experience	in	installing	and	configuring	Docker	on	a	Windows	Server	2016	server.	You'll	then
deploy	a	couple	of	different	images	as	containers	to	the	server	and	experiment	with	managing	those
images	and	containers.	Finally,	you	will	configure	Azure	to	allow	you	to	access	those	containers	from
outside	of	your	virtual	network.

Time	Estimate:	2.5	hours

Overview

Setup	Requirements
The	following	workshop	will	require	that	you	use	a	Remote	Desktop	client	in	order	to	connect	to	a
remote	machine.	If	you	are	using	a	Mac,	then	download	the	Microsoft	Remote	Desktop	client.

Additional	Requirements
For	the	following	workshop,	you	will	need	a	subscription	(trial	or	paid)	to	Microsoft	Azure.	Please	see
the	next	page	for	how	to	create	a	trial	subscription,	if	necessary.

Requirements

https://itunes.apple.com/us/app/microsoft-remote-desktop/id715768417?mt=12
Azure_Registration.html

Azure
We	need	an	active	Azure	subscription	in	order	to	perform	this	workshop.	There	are	a	few	ways	to
accomplish	this.	If	you	already	have	an	active	Azure	subscription,	you	can	skip	the	remainder	of	this
page.	Otherwise,	you'll	either	need	to	use	an	Azure	Pass	or	create	a	trial	account.	The	instructions	for
both	are	below.

Azure	Pass
If	you've	been	provided	with	a	voucher,	formally	known	as	an	Azure	Pass,	then	you	can	use	that	to
create	a	subscription.	In	order	to	use	the	Azure	Pass,	direct	your	browser	to
https://www.microsoftazurepass.com	and,	following	the	prompts,	use	the	code	provided	to	create
your	subscription.

Trial	Subscription
Direct	your	browser	to	https://azure.microsoft.com/en-us/free/	and	begin	by	clicking	on	the	green
button	that	reads	Start	free.

1.	 In	the	first	section,	complete	the	form	in	its	entirety.	Make	sure	you	use	your	real	email
address	for	the	important	notifications.

2.	 In	the	second	section,	enter	a	real	mobile	phone	number	to	receive	a	text	verification
number.	Click	send	message	and	re-type	the	received	code.

3.	 Enter	a	valid	credit	card	number.	NOTE:	You	will	not	be	charged.	This	is	for	verification	of
identity	only	in	order	to	comply	with	federal	regulations.	Your	account	statement	may	see	a
temporary	hold	of	$1.00	from	Microsoft,	but,	again,	this	is	for	verification	only	and	will	"fall
off"	your	account	within	2-3	banking	days.

4.	 Agree	to	Microsoft's	Terms	and	Conditions	and	click	Sign	Up.

This	may	take	a	minute	or	two,	but	you	should	see	a	welcome	screen	informing	you	that	your
subscription	is	ready.	Like	the	Office	365	trial	above,	the	Azure	subscription	is	good	for	up	to	$200	of
resources	for	30	days.	After	30	days,	your	subscription	(and	resources)	will	be	suspended	unless	you
convert	your	trial	subscription	to	a	paid	one.	And,	should	you	choose	to	do	so,	you	can	elect	to	use	a
different	credit	card	than	the	one	you	just	entered.

Azure	Registration

https://www.microsoftazurepass.com/
https://azure.microsoft.com/en-us/free/

Congratulations!	You've	now	created	an	Office	365	tenant;	an	Azure	tenant	and	subscription;	and,
have	linked	the	two	together.

Objective
The	first	objective	is	for	you	to	become	familiar	with	connecting	to	and	navigating	the	Azure	portal.
This	will	not	be	a	difficult	exercise,	but	will	nonetheless	demonstrate	how	to	work	within	the	Azure
user	interface.

Azure	Portal	Basics
Let's	start	by	connecting	to	the	Azure	portal	and	becoming	familiar	with	navigation.

1.	 Open	a	browser	and	navigate	to	http://www.azure.com.

2.	 In	the	top-right	corner	of	your	screen,	you	will	see	the	menu	option	PORTAL.	Click	on	it.

3.	 If	you	have	not	already,	you	will	be	required	to	authenticate.

4.	 After	authentication	is	successful,	you	will	be	directed	to	your	Dashboard.	The	dashboard	is
configurable	by	adding,	removing	and	resizing	tiles.	Additionally,	you	can	have	multiple
dashboards	depending	on	your	preferences.	You	could	have	different	dashboards	for
resources	dedicated	to	different	functions,	lines	of	business,	or	for	operations.

5.	 On	the	left	will	be	your	primary	navigational	menu.	You	should	see	a	list	of	favorited	services
on	the	menu	with	descriptions.	(NOTE:	The	number	of	options	listed	in	your	menu	may	differ
from	that	of	others	depending	on	the	number	of	services	you	have	selected	as	a	favorite.)	If
all	you	see	are	icons	(no	descriptions)	on	your	menu,	your	menu	is	currently	collapsed.	Click
the	"hamburger"	 	to	expand	it.

6.	 Pretty	close	to	the	top	of	your	menu,	you	should	see	Resource	Groups	 .	Click	this
option.

7.	 Upon	clicking	the	Resource	Groups	menu	item,	a	blade	will	open	revealing	any	created
resource	groups.	In	order	to	create	resources	in	Azure,	you	must	assign/place	it	in	a	resource
group.

This	is	where	we	will	get	started	creating	our	resources.

While	this	introduction	wasn't	too	technical,	it	is	sufficient	for	getting	us	to	a	point	where	we	can
begin	the	specifics	in	the	workshop.	If	you'd	like	to	look	around	a	bit	more,	click	a	few	of	the	other
options	in	the	main	menu.	Then,	when	you	are	ready,	can	you	proceed	to	the	next	step.

Exploring	Azure

http://www.azure.com/
Create_a_Virtual_Machine.html

Objective
Now	that	we've	explored	the	Azure	portal	a	bit,	let's	get	started	with	creating	some	resources.	Our
primary	resource	will	be	a	virtual	machine	on	which	we	install	Docker.	Once	we	create	the	virtual
machine,	we'll	see	that	some	additional	resources	are	created	for	us.

Create	a	Resource	Group
As	stated	on	the	previous	page,	in	order	to	create	resources,	we	need	a	Resource	Group	to	place
them	in.

1.	 If	you	are	not	there	already,	go	ahead	and	click	on	the	Resource	Groups	 	in	the	Azure
Portal	to	open	the	Resource	Groups	blade.

2.	 At	the	top	of	the	Resource	Groups	blade,	click	on	Add	 .	This	will	open	a	panel	that	asks
for	some	basic	configuration	settings.

3.	 Complete	the	configuration	settings	with	the	following:

Resource	group	name:	azworkshops_docker_win_demo
Subscription:	<choose	your	subscription>
Resource	group	location:	<choose	your	location>

4.	 <Optional>	Check	Pin	to	dashboard	at	the	bottom	of	the	panel.

5.	 Click	Create.

6.	 It	should	only	take	a	second	for	the	resource	group	to	be	created.	Once	you	click	create,	the
configuration	panel	closes	and	returns	you	to	the	list	of	available	resource	groups.	Your
recently	created	group	may	not	be	visible	in	the	list.	Clicking	on	Refresh	 	at	the	top	of
the	Resource	Groups	blade	should	display	your	new	resource	group.

NOTE:	When	you	create	a	resource	group,	you	are	prompted	to	choose	a	location.	Additionally,	as
you	create	individual	resources,	you	will	also	be	prompted	to	choose	locations.	The	location	of
resource	groups	and	their	resources	can	be	different.	This	is	because	resource	groups	store	metadata
describing	their	contained	resources;	and,	due	to	some	types	of	compliance	that	your	company	may
adhere	to,	you	may	need	to	store	that	metadata	in	a	different	location	than	the	resources
themselves.	For	example,	if	you	are	a	US-based	company,	you	may	choose	to	keep	the	metadata
state-side	while	creating	resources	in	foreign	regions	to	reduce	latency	for	the	end-user.

Create	a	Virtual	Machine

Create	a	Virtual	Machine
Now	that	we	have	an	available	resource	group,	let's	create	the	actual	Windows	server.

1.	 If	you	are	not	there	already,	go	ahead	and	navigate	to	the
azworkshops_docker_win_demo	resource	group.

2.	 At	the	top	of	the	blade	for	our	group,	click	on	Add	 .	This	will	display	the	blade	for	the
Azure	Marketplace	allowing	you	to	deploy	a	number	of	different	solutions.

3.	 We	are	interested	in	deploying	a	Windows	Server	2016	Datacenter	server.	Therefore,	in	the
Search	Everything	box,	type	in	Windows	Server	2016.	This	will	display	a	couple	of	different
versions.	Choose	Windows	Server	2016	Datacenter.

4.	 There	will	be	a	number	of	solutions	available,	including	one	with	containers	already	enabled.
For	the	practice,	we'll	enable	containers	manually.	Therefore,	choose	the	image	as
highlighted	in	the	image	below.

5.	 This	will	display	a	blade	providing	more	information	about	the	server	we	have	chosen.	To
continue	creating	the	server,	choose	Create.

6.	 We	are	now	prompted	with	some	configuration	options.	There	are	3	sections	we	need	to
complete	and	the	last	section	is	a	summary	of	our	chosen	options.

1.	 Basics

Name:	docker-win
VM	disk	type:	SSD
Username:	localadmin
Password:	Pass@word1234
Confirm	password:	<same	as	above>
Subscription:	<choose	your	subscription>
Resource	group:	Use	existing	-	azworkshops_docker_win_demo
Location:	<choose	a	location>
Already	have	a	Windows	Server	license?	No

2.	 Size

DS1_V2
3.	 Settings

Use	managed	disks:	No

Storage	account:	(click	on	it	&	Create	New)

Name:	dockerwindata<random	number>	(ex.
dockerwindata123456)
(NOTE:	This	name	must	be	globally	unique,	so	it	cannot	already	be
used.)
Performance:	Premium
Replication:	Locally-redundant	storage	(LRS)

Virtual	network:	<accept	default>	(e.g.	(new)
azworkshops_docker_win_demo-vnet)

Subnet:	<accept	default>	(e.g.	default	(172.16.1.0/24))

Public	IP	address:	<accept	default>	(e.g.	(new)	docker-win-ip)

Network	security	group	(firewall):	<accept	default>	(e.g.	(new)	docker-win-
nsg)

Extensions:	No	extensions

Availability	set:	None

Boot	diagnostics:	Enabled

Guest	OS	diagnostics:	Disabled

Diagnostics	storage	account:	(click	on	it	&	Create	New)

Name:	dockerwindiags<random	number>	(ex.
dockerwindiags123456)
Performance:	Standard
Replication:	Locally-redundant	storage	(LRS)

4.	 Summary	(just	click	OK	to	continue)

Once	scheduled,	it	may	take	a	minute	or	two	for	the	machine	to	be	created	by	Azure.	Once	it	has
been	created,	Azure	should	open	the	machine's	status	blade	automatically.

Connect	to	the	Virtual	Machine
Once	your	machine	has	been	created,	we	can	remotely	connect	to	it	via	a	remote	desktop	protocol
(RDP)	client.

Get	Public	IP
1.	 If	it	is	not	already	open,	navigate	to	the	Overview	blade	of	your	newly	created	virtual

machine.

2.	 In	the	top	section	of	the	blade,	in	the	right	column,	you	should	see	a	Public	IP	address
listed.	

3.	 Copy	the	IP	address.

Connect	to	the	Machine	via	Remote	Desktop
To	connect	to	the	machine	remotely,	we	need	to	download	the	Remote	Desktop	Protocol	(RDP)
profile.

1.	 Click	on	the	Overview	 	to	return	to	the	general	information	for	the	ad-connect	virtual
machine.

2.	 In	the	Actions	section,	click	on	Connect	 .	This	will	download	the	RDP	profile	to	your
machine.

3.	 Open	the	profile	and	accept	any	warnings.

4.	 For	the	username,	enter	\localadmin	(with	the	backslash).	And,	for	the	password,	enter
Pass@word1234.	Click	OK.

5.	 Again,	accept	any	warnings.

Congratulations.	You	have	successfully	created	and	connected	to	your	remote	Windows	Server	2016
server	in	Azure.	You	are	now	ready	to	install	the	Docker	runtime.

Overview
We	have	just	created	our	Windows	Server	2016	server.	We	now	need	to	apply	any	available	system
updates	along	with	installing	and	configuring	Docker	to	begin	working	with	containers.

Install	Updates
Just	like	any	other	operating	system,	updates	are	periodically	released	to	support	new	features	and
patch	any	potential	security	threats.	We	will	apply	the	updates	first.

1.	 If	you	have	not	already,	connect	to	your	remote	Windows	Server	2016	server	and	login.

2.	 Open	a	command	prompt	as	an	Administrator,	type	the	following	at	the	command	prompt:

sconfig

3.	 This	will	open	a	screen	like	the	following:

Install	Docker

4.	 Choose	option	 6 ,	then	 A 	(twice)	to	download	and	install	all	updates.

5.	 Depending	on	the	number	and	size	of	available	updates,	this	process	may	take	a	few
minutes	and	could	require	a	reboot.	Now	would	be	a	good	time	to	take	a	break.

Install	Docker
We	now	have	an	updated	Windows	operating	system.	We	are	ready	to	install	Docker.

1.	 Open	a	PowerShell	prompt	as	an	Administrator	and	type	the	following:

Install-PackageProvider	-Name	NuGet	-MinimumVersion	2.8.5.201	-Force
Install-Module	-Name	DockerMsftProvider	-Force
Install-Package	-Name	docker	-ProviderName	DockerMsftProvider	-Force
Restart-Computer	-Force

2.	 This	will	download	the	Docker	engine	and	install	it	as	a	background	service.

3.	 After	you	run	the	above	commands,	your	virtual	machine	will	reboot	forcing	a	disconnect.	Go
ahead	and	reconnect.

Ensure	Docker	Engine	is	Running
1.	 Open	a	PowerShell	prompt	as	an	Administrator	and	type	the	following:

docker	version

2.	 You	should	see	something	similar	to	the	following:

Client:
	Version:						17.03.1-ee-3
	API	version:		1.27
	Go	version:			go1.7.5
	Git	commit:			3fcee33
	Built:								Thu	Mar	30	19:31:22	2017
	OS/Arch:						windows/amd64

Server:
	Version:						17.03.1-ee-3
	API	version:		1.27	(minimum	version	1.24)
	Go	version:			go1.7.5
	Git	commit:			3fcee33
	Built:								Thu	Mar	30	19:31:22	2017
	OS/Arch:						windows/amd64
	Experimental:	false

3.	 Because	the	service	is	running,	we	can	now	use	the	 docker 	command	later	in	this
workshop.

You've	successfully	installed	the	Docker	engine.

Overview
Now	that	we	have	Docker	installed,	we	are	able	to	deploy	images	as	containers.	In	this	short	step	of
the	workshop,	we	will	deploy	a	small	containers	to	test	our	Docker	engine	on	Windows.

Hello	World
1.	 Ensure	you	have	logged	in	to	your	remote	Windows	Server	2016	server	and	are	at	the

prompt.

2.	 From	the	PowerShell	prompt,	type	the	following:

docker	run	microsoft/dotnet-samples:dotnetapp-nanoserver

3.	 You	should	then	see	something	similar	to	the	following:

Nano	Man

									Dotnet-bot:	Welcome	to	using	.NET	Core!

																				\
																					\
																							
																							'
																								
																					
																	'..'..
														'..'.....
												'..........'..'..'....
											'..........'..'..'.....
											.'....'..'..........'..'.......'.
											.'..................'...		
										'.........								
										
									
								
								
									
									'................
								'..'......			
					'..'.....						
		'.............'..'....					
	..'..'...					'.......					
...'......				
...........		
.......								'...'.'.														'.'.'.'								
.......						'..															..'.....
'........
							
																					'..............
					'..														.'.'............
				'.'.............
			'..															..'..'...........
			'..............
				
					

Environment
Platform:	.NET	Core	1.0
OS:	Microsoft	Windows	10.0.14393

Overview
The	final	part	of	this	workshop	is	to	expose	an	IIS	container	outside	of	Azure.	We're	going	to	create	a
simple	web	server	and	access	it	from	our	local	machine.

IIS
We	are	going	to	deploy	a	basic	container	hosting	IIS	and	then	expose	the	sample	IIS	website	outside
of	Azure.

From	PowerShell,	type	the	following:

docker	run	-d	-p	80:80	microsoft/iis

This	will	download	and	run	IIS	in	the	background.	As	stated	earlier	in	this	workshop,	we	often	run
services	in	detached	mode	(-d).	As	new	parameter	that	you	see	here	is	mapping,	or	publishing	(-
p),	ports	-	very	similar	to	a	NAT,	if	you	are	familiar	with	the	concept.	There	are	two	ports	specified
here	separated	by	a	colon.	The	first	number	is	the	host's	port	while	the	second	number	is	the
container's	port.	So,	in	essence,	we	are	mapping	the	host's	port	80	to	the	container's	port	80.	If	our
container	runs	multiple	services	or	a	service	requiring	multiple	ports,	we	can	also	specify	a	port
range.

1.	 Let's	make	sure	that	IIS	is	running	successfully.	Open	a	web	browser	on	the	virtual	server	and
try	to	navigate	to	 http://localhost .	Oops.	It	seems	we	received	an	error.	What	did	we	do
wrong?	Let's	investigate.

2.	 If	one	is	not	already	open,	open	a	PowerShell	window	and	type	in	 docker	ps .

3.	 You	should	see	something	like	the	following:

CONTAINER	ID								IMAGE															COMMAND																			CREATED						
							STATUS														PORTS																NAMES
c21c24a24027								microsoft/iis							"C:\\ServiceMonitor..."			23	seconds	ag
o						Up	14	seconds							0.0.0.0:80->80/tcp			kickass_raman

Deploying	an	IIS	Container

4.	 Notice	the	Ports	column.	Our	external	port	is	not	mapped	to	the	loopback	address	(e.g.
127.0.0.1 	or	 localhost).	Long	story	short,	this	is	due	to	a	way	Windows	maps	its	network
interfaces.

5.	 We	need	to	get	the	actual,	virtual	IP	address	of	the	container.	To	do	this,	type	the	following	at
the	PowerShell	prompt	(change	the	container	id	to	your	container's	id):

docker	inspect	--format	'{{	.NetworkSettings.Networks.nat.IPAddress	}}'	c21

7.	 So,	let's	use	the	returned	IP	instead	of	the	 localhost 	to	load	our	website.	In	the	browser
change	the	URL	to	 http://<your	container's	virtual	IP	address>:8080 	(e.g.
http://192.168.150.195).

Windows	Firewall
Before	we	can	access	the	IIS	server	from	outside	of	Azure,	we	need	to	open	the	port	in	Windows
Firewall.

1.	 On	the	remote	server,	click	the	Start	Menu	and	begin	typing	Firewall.	This	should	provide
a	menu	option	for	Windows	Firewall	with	Advanced	Security.	Click	on	it.

2.	 Select	Inbound	Rules	in	the	left	pane	and	click	New	Rule...	in	the	right	pane.

3.	 For	Rule	Type,	select	Port	and	click	Next.

4.	 On	the	Protocol	and	Ports	page,	select	TCP,	Specific	local	ports,	and	enter	80	in	the
input	box.	Click	Next.

5.	 For	Action,	choose	Allow	the	connection	and	click	Next.

6.	 For	Profile,	leave	all	three	profiles	checked	and	click	Next.

7.	 Finally,	name	the	rule	Allow-HTTP	and	click	Finish.

Network	Security	Group	(NSG)
Now	that	our	web	server	is	running,	let's	make	it	available	outside	of	Azure.

When	we	created	our	Windows	virtual	machine,	we	accepted	the	defaults,	including	the	default
settings	for	our	NSG.	The	default	settings	only	allowed	RDP	(port	3389)	access.	We	need	to	add	a
rule	to	our	NSG	to	allow	HTTP	traffic	over	port	80.

1.	 If	you	are	not	still	there,	go	back	to	the	Azure	portal	and	navigate	to	the	settings	of	your
CentOS	virtual	machine.

2.	 In	the	left	menu,	click	on	Network	interfaces	 .

3.	 This	will	open	the	Network	Interfaces	blade	for	your	CentOS	virtual	machine.	Click	on	the
singular,	listed	interface.

4.	 In	the	left	menu,	click	on	Network	security	group	 .

5.	 This	will	list	the	currently	active	NSG.	In	our	case,	it	should	be	the	NSG	that	was	created	with
our	virtual	machine	-	docker-centos-nsg.	Click	on	the	NSG	(NOTE:	Click	on	the	actual	NSG
link,	NOT	on	Edit).

6.	 In	the	left	menu,	click	on	Inbound	security	roles	 .

7.	 At	the	top	of	the	blade,	click	Add	 .

8.	 Enter	the	following	configuration:

Name:	allow-http
Priority:	1010
Source:	Any
Service:	HTTP
Action:	Allow

9.	 Click	OK.

This	should	only	take	a	couple	of	seconds.	Once	you	see	the	rule	added,	open	a	new	browser	and
navigate	to	the	IP	address	of	your	Windows	virtual	machine,	including	the	port	number.	The	IP
address	used	in	this	workshop's	screen	shots	is	40.121.223.152	(your	IP	address	will	be	different).
Using	the	aforementioned	IP	address,	I	would	direct	my	browser	to	http://40.121.223.152/.	Doing
so,	you	should	see	the	IIS	landing	page.

